Seasonal Wetlands Habitat Vulnerability Assessment Summary

Overall Vulnerability

Seasonal Wetlands	Score (1-5)	Confidence (1-3)
Sensitivity	Moderate-High (4)	High (3)
Exposure	Moderate-High (4)	High (3)
Adaptive Capacity	Moderate (3)	High (3)
Vulnerability	Moderate-High (4)	High (3)

Sensitivity

Climate-driven	
Stressors	Potential Impacts
Snowpack and	Water for seasonal wetlands in spring/summer comes from water in snowpack
precipitation	and reservoir storage. Water availability and cost is a limiting factor for wetland
amount	irrigation.
Precipitation	Water timing is critical, and the need is often greatest when water availability is
timing	lowest and competition for water resources (e.g., with agriculture) is high.
	Timing of runoff important for seed germination and production in seasonal
Timing of	wetlands, seed production highest when spring drawdown occurs slowly through
snowmelt/runoff	evaporation
Extreme events	
(drought)	Less sensitive to drought than other habitats if stored water is available.

Disturbance	
Regimes	Potential Impacts
	Natural scouring from high water flows has been replaced by tractor disking as a
	habitat management technique; important for maintaining mosaic habitat for
Flooding	giant garter snake.
	Moderate grazing increases species richness and vegetative cover. Intensive
Grazing	grazing may negatively impact water quality.
	Seasonal wetland management typically includes prescribed fire, which may be
Wildfire	used to increase species richness and vegetative cover

Non-climate	
Stressors	Potential Impacts
	Hunting provides funding for the conservation of this habitat. Two-thirds of
Hunting	wetlands on private lands are maintained for hunting.
	Unprotected wetlands are vulnerable to future land use conversion, and many
	privately-owned wetlands, which comprise two-thirds of all seasonal wetlands in
Land use change	the Central Valley, remain unprotected.

Non-climate		
Stressors	Potential Impacts	
	Warmer temperatures and water shortages resulting in eariler drawdowns may	
Invasive species	allow more xeric plants to invade seasonally-flooded wetlands	
	Increased nutrient availability can increase production of algae, decrease	
	dissolved oxygen, and alter the species composition of plant, invertebrate, and	
Nutrient loading	aquatic vertebrate communities.	

Exposure

Future Projected		
Changes	Exposure Notes	Potential Refugia
Decreased snowpack	Statewide, 1% or less of the current area of	Projected suitable
and earlier snowmelt	freshwater marsh is projected to remain suitable by	habitat primarily on the
& runoff, resulting in	the end of the century, and the small areas of	eastern side and a small
less available stored	marsh that are still suitable will likely occur as	area located on the far
water	vegetation refugia.	north-western edge.
Agricultural practices	Two-thirds of the remaining area of seasonal	Regions where access to
& Land use change	wetlands is privately owned; these areas are	stored water is more
	exposed to change away from flooding practices	secure.
	during periods of drought when the cost of water is	
	very high.	

Adaptive Capacity

Ecosystem	Habitat greatly reduced and highly fragmented. Over half of remaining habitat is
condition	located in the San Joaquin (61,000 acres) and Suisun (32,000 acres) basins. There is
	significant year-to-year variation in the area of flooded habitat, responding to water
	availability.
Resistance &	Resistance to climate stressors is largely related to the economic support coming from
recovery	hunters, as well as incentive programs, both of which fund habitat management and
	water costs.
Diversity	Characterized by moderate overall habtitat diversity with high species diversity.
	Tricolored blackbird and salt marsh harvest mouse (Suisun) the most sensitive
	component species.
Management	Low-moderate likelihood of converting farmland to wetland habitat due to
potential	competition with commodity prices. Receives regulatory, legislative support but
	society would have to prioritize wetland management over other uses of water.
	Frequent flooding may increase societal support, drought reduces support. Possibility
	of being able to manage/alleviate the impacts of climate change are good because the
	system is highly managed. Land managers may be able to buffer wetlands from
	climate change impacts if water is available, as well as policies that support wetland
	irrigation. Flooded croplands complement wetland habitat continuity.